Preliminary Results of Heat Transfer and Pressure Drop Measurements on Al2O3/H2O Nanofluids through a Lattice Channel

نویسندگان

چکیده

A nanofluid is composed of a base fluid with suspension nanoparticles that improve the fluid’s thermophysical properties. In this work, authors have conducted experimental tests on an alumina-based (Al2O3/H2O) moving inside 3D-printed lattice channel. The unit cell’s shape can be considered double X or pyramidal truss common vertex. test channel 80 mm long and has cross-sectional area, without internal dimensions H × W, = 5 W 15 mm. duct represent good compound technique for enhancing heat transfer. heated by electrical resistance wound onto its outer surface. transfer rate absorbed nanofluid, convective coefficients, pressure drops are evaluated. carried out at various volumetric contents (φ 1.00%, φ 1.50% 2.05%) flow rates (from 0.2 L/min to 2 L/min). preliminary results show in range between 0.5 ÷ 2.0 L/min, values coefficients greater than those pure water 0) all concentrations Al2O3; thus, higher thermal power water, average increase 6%, 9%, 14% 2.05% volume concentrations, respectively. not very different from water; therefore, use nanofluids also increased cooling efficiency system.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical investigation of γ-Al2O3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger

The effect of γ-Al2O3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-Al2O3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. Since the properties of γ-Al2O3-water nanofluids were variable, they were ...

متن کامل

Numerical Investigation of Heat Transfer and Pressure Drop in a Corrugated Channel

The influence of variation in rib-height to channel-height ratio (e/H) on the heat transfer and pressure drop characteristics inside a channel with corrugated upper and lower plates was investigated numerically in the present study. The governing equations were solved by using finite volume approximations for a wide range of (0.06 < e/H < 0.26) and Reynolds numbers (5400 < Re < 23000), with a m...

متن کامل

Effect of Al2O3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel

The fluid flow and heat transfer in a three-dimensional microchannel filled with Al2O3- water nanofluid is numerically investigated. The hybrid scheme is used to discretize the convection terms and SIMPLER algorithm is adopted to couple the velocity and pressure field in the momentum equations. The thermal and flow fields were analyzed using different volume fractions of n...

متن کامل

Effect of Al2O3-water nanofluid on heat transfer and pressure drop in a three-dimensional microchannel

The fluid flow and heat transfer in a three-dimensional microchannel filled with Al2O3- water nanofluid is numerically investigated. The hybrid scheme is used to discretize the convection terms and SIMPLER algorithm is adopted to couple the velocity and pressure field in the momentum equations. The thermal and flow fields were analyzed using different volume fractions of n...

متن کامل

a numerical investigation of γ-al2o3-water nanofluids heat transfer and pressure drop in a shell and tube heat exchanger

the effect of γ-al2o3 nanoparticles on heat transfer rate, baffle spacing and pressure drop in the shell side of small shell and tube heat exchangers was investigated numerically under turbulent regime. γ-al2o3-water nanofluids and pure water were used in the shell side and the tube side of heat exchangers, respectively. since the properties of γ-al2o3-water nanofluids were variable, they were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2023

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en16093835